首页

AD联系:3171672752

AG

时间:2020-04-10 01:31:47 作者:皇冠即时比分 浏览量:96121

AG永久入口【AG88.SHOP】AG高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

,见下图

高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

,见下图

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向,如下图

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

如下图

高效组件中的多主栅技术及发展方向,如下图

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向,见图

AG高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

AG高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

1.北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

2.高效组件中的多主栅技术及发展方向。

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向

3.高效组件中的多主栅技术及发展方向。

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

4.北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

高效组件中的多主栅技术及发展方向高效组件中的多主栅技术及发展方向。AG

展开全文
相关文章
重庆彩票网

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

即时比分

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

亲朋棋牌

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

吉祥棋牌

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

老虎机游戏

高效组件中的多主栅技术及发展方向....

相关资讯
澳客彩票

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

立即博

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

推牌九

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

推牌九

北极星太阳能光伏网讯:

多主栅技术原理

(来源:微信号“光伏” ID:pvmagazine)

2.多主栅组件功率提升研究

分别模拟多主栅电池组件,圆形焊带数量和直径对于组件功率影响:

1. 主栅数量在10根以后功率增加和串阻降低变化不明显;

2. 不同数量主栅对应最假圆形焊带直径,12栅优选350μm。

得到以下理论模拟结果:

3.多主栅半片组件产品优势

4.多主栅半片组件功率提升研究

功率提升模拟研究(1)

模拟仅改变主栅数量和焊丝直径,其他参数保持一致;

焊丝直径在常规使用的350μm 时,9BB半片组件较12BB半片组件功率高 0.43W ,焊丝直径进一步降低,功率差异减小,在225μm左右时,12BB半片组件功率高于9BB。

实际验证—p型多晶

P 型多晶金刚线十二栅组件,半片组件较整片组件,正面功率较整片提升5.05W;相对于五栅整片整体提升10.65W,提升比例约4%。

实际验证—n型单晶

N型单晶十二栅双玻组件,半片组件较整片组件正面功率较整片提升6.14W;相对于五栅整片整体提升16.07W。

功率提升模拟研究(2)

改变三角焊带底角和边长,固定主栅数量组件模拟。

对于多主栅三角焊带组件功率,三角底角在 65 ° 左右光学增益最佳;

采用 7BB 三角焊带组件设计,三角焊带边长在 600 微米左右后功率增益不明显。

理论模拟

实际验证

七栅半片三角焊带比七栅整片平焊带组件功率提升约13W,功率提升比例约4.74%。

5.总结

相比五栅电池组件,多晶12栅组件功率提升6-8W,n型单晶12栅组件功率8-10W;

多主栅+半片设计,优选焊带尺寸、主栅数量等,多晶组件功率提升10W,n型单晶组件功率提升15W, 结合镀釉玻璃12栅半片n型电池组件可以实现20W功率提升;

多主栅三角焊带+半片设计多晶组件功率提升13W,后续可进一步优化至15W;

原标题:高效组件中的多主栅技术及发展方向

....

热门资讯